
1/31/2002 1

Something fundamental is brewing...

• Increasing prevalence of mobile work, ad hoc teams and computers
conversing with computers

• Growing numbers of embedded and mobile information appliances
– PDAs, cell phones, CrossPad, InfoPen…
– Over 4 billion embedded processors sold per year

• Rich and growing pico-cellular wireless technologies
– Bluetooth, HomeRF, 802.11, IrDA…
– Bluetooth to produce a 9x9mm radio on a chip

• Emerging technologies for dynamic service discovery
– Jini, Universal Plug-and-Play, Service Location Protocol…

• Increasing use of Next-Generation Software Languages and Tools
– Java, Tcl, DCOM, JavaScript, REBOL...

…leading to a concept that ITL calls
Pervasive Computing

1/31/2002 2

Pervasive Computing:
The Key Defining Properties

• Ubiquitous
– Low-Cost
– Embedded
– Distributed
– Non-intrusive
– Innumerable

• Interconnected
– Wired Core
– Wireless Edge

• Dynamic
– Mobile
– Self-configuring

1/31/2002 3

ITL Pervasive Computing Portfolio

Pico-cellular Wireless
Technologies

Dynamic Service and
Device Discovery

Technologies

Pervasive
Applications

Advanced
User

Interfaces

Dynamic Programming
Models

Smart RoomsUser Interfaces
Division

Software
Division

Networking
Division

ITL Division* Reference Model

Relevant Industry Technologies
• Jini
• Service Location Protocol
• Universal Plug and Play
• Salutation Consortium
• Bluetooth Service Discovery

• IEEE 802.15 Wireless Personal
Area Networks (WPAN)

• Bluetooth SIG
• HomeRF Consortium
• Ultra Wideband Communications

*These three divisions sponsored
Pervasive Computing 2000, the
first industry conference on this
topic. And, of course, there is a large
space for the Security Division

Focus of Networking Division

Pico-cellular Wireless
Technologies

Dynamic Service and
Device Discovery

Technologies

Pervasive
Applications

Advanced
User

Interfaces

Dynamic Programming
Models

Smart Rooms

Pico-cellular Wireless
Technologies

Dynamic Service and
Device Discovery

Technologies

Pervasive
Applications

Advanced
User

Interfaces

Dynamic Programming
Models

Smart RoomsUser Interfaces
Division

Software
Division

Networking
Division

ITL Division* Reference Model

Relevant Industry Technologies
• Jini
• Service Location Protocol
• Universal Plug and Play
• Salutation Consortium
• Bluetooth Service Discovery

• IEEE 802.15 Wireless Personal
Area Networks (WPAN)

• Bluetooth SIG
• HomeRF Consortium
• Ultra Wideband Communications

*These three divisions sponsored
Pervasive Computing 2000, the
first industry conference on this
topic. And, of course, there is a large
space for the Security Division

Focus of Networking Division

1/31/2002 4

Assessing the stateAssessing the state--ofof--thethe--art in Dynamic art in Dynamic
Discovery of Ad Hoc Network ServicesDiscovery of Ad Hoc Network Services

Christopher Dabrowski, Olivier Mathieu, Kevin Mills, Doug Montgomery,
and Scott Rose

NRC Review Meeting
February 9, 2001

A Project in the ITL Pervasive Computing Portfolio

1/31/2002 5

Project Goal
Compare and contrast emerging commercial service discovery technologies

with regard to function, structure, behavior, performance and scalability.

Universal

Plug and Play

1/31/2002 6

Scott Rose, Jini emulation environment & measurements
Olivier Mathieu, UPnP emulation environment & measurements
Doug Montgomery, Measurement Approaches and Techniques

Christopher Dabrowksi, Architecture Description Languages and Tools
Kevin Mills, Scenarios, Metrics, and Properties

Project Team

1/31/2002 7

Presentation Topics
Planned Approach to Modeling and Analysis and Current Status

Planned Approach to Measurement and Current Status

Technical Discussion of Initial Progress

Generic and Specific UML Models Encompassing Jini, UPnP,
SLP, HAVi, and Bluetooth (Saluation to be assessed later)

Rapide Model for Jini (90% complete)

Initial Measurement Testbed and Infrastructure Running for Jini
and UPnP

Upcoming Milestones and Planned Publications

Demonstration

1/31/2002 8

Modeling Function, Structure, and Behavior

Products
• Rapide specifications of Jini, Universal Plug and Play

(UPnP), and Service Location Protocol (SLP)
• Scenarios and topologies for evaluating discovery protocols
• Suggested invariant properties for service discovery protocols
• Suggested metrics, based on partially ordered sets

(POSETs), for comparing and contrasting discovery protocols
• Paper identifying inconsistencies and ambiguities in service

discovery protocols and describing how they were found
• Paper proposing invariants for service discovery protocols,

and evaluating how Jini, UPnP, and SLP fare
• Paper comparing and contrasting Jini, UPnP, and SLP at

the level of POSET metrics

Objectives
(1) Provide increased understanding of the competing

dynamic discovery services emerging in industry
(2) Develop metrics for comparative analysis of

different approaches to dynamic discovery and for analyzing
consistency and completeness of discovery protocols

(3) Assess suitability of architecture description languages to
model and analyze emerging dynamic discovery protocols

Technical Approach
Develop ADL models from selected specifications for service
discovery protocols and develop a suite of scenarios and
topologies with which to exercise the ADL models
Propose a set of invariant properties that all dynamic
discovery protocols should satisfy
Propose a set of metrics, based on partially ordered sets,
with which to compare and contrast discovery protocols
Analyze the ADL models for inconsistencies, to assess

invariant satisfaction, and to compare and contrast protocols

Status as of January 31, 2001

• Developed a generic UML model encompassing the
structure and function of Jini, UPnP, SLP, Bluetooth,
and HAVi

• Projected specific UML models for Jini, UPnP, and SLP
• Developed a Rapide Model of Jini structure, function,

and behavior (90% complete)
• Drafted a scenario language to drive the Rapide Jini

Model; currently being implemented.
• Developed some initial invariants and constraints for

Jini behavioral model
• Discovered a significant architectural issue in the

interaction between Jini directed discovery and
multicast discovery

1/31/2002 9

Measuring Performance and Scalability

Products
• Experimenter’s toolkits consisting of synthetic workload

generation tools, scenario scripts, and performance
measurement tools for SDPs.

• Measurement methodologies and tools for SDPs and
supporting protocols.

• Ad-hoc network simulation environment and SDP protocol
models.

• Publications / standards contributions providing quantitative
analysis of the relative performance and scaling properties
of SDPs.

Objectives
(1) Provide a quantitative, comparative analysis of the

performance and scaling characteristics of emerging
service discovery protocols (SDPs).

(3) Design methodologies and tools for performance and
scaling measurement of SDPs and supporting protocols.

(4) Develop simulation tools for large scale ad-hoc
network / application environments

Technical Approach
Design and develop experimenters toolkits for conducting
live performance analysis of SPDs implementations.
Propose metrics and scenarios for comparing the
performance of multiple SDP protocols.
Design and develop simulation models of emerging SDPs
and adhoc network environments.
Analyze and compare the performance of SDPs based upon
testbed measurements and simulation.

Status as of December 21, 2000

• Designed methodology and scenarios for comparative
performance evaluation of live Jini and UPnP
implementations.

• Established testbed with Sun Jini, Intel/Microsoft UPnP
implementations.

• Developed synthetic workload generation tools for Jini and
UPnP capable of emulating 10’s-100’s of devices/services
and control point / clients.

• Discovered scaling problems with Intel Linux UPnP 1.0
implementation. Conducted initial investigations in protocol
/ parameter tuning to increase the scalability of this
implementation.

• Began design and development of on-the-wire performance
measurement tools for SDPs and supporting protocols.

1/31/2002 10

Modeling and Analysis Goals

1) Use ADLs and associated tools to analyze Discovery Protocol
specifications to assess consistency and completeness w.r.t.
dynamic change conditions.

2) Compare and contrast emerging commercial service discovery
technologies with regard to function, structure, behavior,
performance and scalability in the face of dynamic change.

Universal

Plug and Play

1/31/2002 11

Generic UML Structural Model of
Service Discovery Protocols

Notif ication Request

(from Data View)

<<repository entry >>

Parameter Notif ication Request

(from Data View)

<<repository entry >>
Serv ice Cache
<<repository >>

Notif ication Cache
<<repository >>

0..*0..*

Aggregates

Serv ice Cache
<<repository >>

Serv ice Repository
<<repository >>

Serv ice Parameter Change Notif ication
<<repository >>

0..*0..*
LOCAL CACHE MANAGER
Start Aging Task()

11

SERVICE PROVIDER

SERVICE DESCRIPTION

Identif y
Ty pe
API
GUI
Attributes

(from Data View)

<<repository entry >>

0..*0..*

Aggregates

11 owns

SERVICE CACHE MANAGER
discov er Network Context()
<<not shr>> activ ate Manager Discov ery ()
activ ate Announce Processing()
start Matching Task()
start Aging Task()
Serv ice Cache Manager()

0..10..1

Contains

11

Contains

SERVICE MANAGER
discov er Network Context()
<<not shr>> Cache Manager Discov ery ()
<<OPT>> Announce Serv ice Processing()
<<not shr>> start Renewal Task()
Serv ice Manager()
<<not shr>> start Serv ice Parameter Matching Task()

11

Contains

0..10..1

0..*0..*

manages

0..*0..*

+inf o cache

0..*

+serv ice inf o
source

0..*

service information collection

SERVICE USER
discov er Network Context()
Serv ice Discov ery ()
<<not shr>> start Renewal Task()
Serv ice User()

0..10..1

0..*

0..*

0..*

0..*

invokes operations

0..*0..*

queries information from

0..*

0..*

0..*

0..*

service availabilty
requests

0..*

0..*

0..*

0..*

service
availability
requests

1/31/2002 12

Architecture Description Languages and Tools

Allow us to model the essential complexity of discovery protocols,
while ignoring the incidental complexity

Incidental complexity represented by the code: for example consider
Core Jini – an 832 page commentary on the massive amount of Java
code that comprises Jini, which also depends on complex underlying
code for Remote Method Invocation, Distributed Events, Object
Serialization, TCP/IP, UDP, HTTP, and Multicast Protocol
Implementation.

Jini documented in a 385 page specification; however, the document
is static and thus captures only the normative complexity because
most of the essential complexity arises through interactions among
distributed independently acting Jini components.

1/31/2002 13

ADLs & Tools….

• Represent essential complexity with effective
abstractions

• Provide a framework and context
– to more easily pinpoint where inconsistencies and

ambiguities may exist within software implementing
specifications & to understand how they arise

– to compare and contrast dynamic discovery protocols
(Jini, UP&P, SLP)

– to define metrics that yield qualitative and quantitative
measures of dynamic component-based software

1/31/2002 14

Rapide, an Architecture Description Language and Tools
Developed for DARPA by Stanford

-- **
-- ** 3.3 DIRECTED DISCOVERY CLIENT INTERFACE **
-- **
-- This is used by all JINI entities in directed
-- discovery mode. It is part of the SCM_Discovery
-- Module. Sends Unicast messages to SCMs on list of
-- SCMS to be discovered until all SCMS are found.
-- Receives updates from SCM DB of discovered SCMs and
-- removes SCMs accordingly
-- NOTE: Failure and recovery behavior are not
-- yet defined and need reviw.
TYPE Directed_Discovery_Client
 (SourceID : IP_Address; InSCMsToDiscover : SCMList; StartOption : DD_Code;
 InRequestInterval : TimeUnit; InMaxNumTries : integer; InPV : ProtocolVersion)
IS INTERFACE
SERVICE DDC_SEND_DIR : DIRECTED_2_STEP_PROTOCOL;
SERVICE DISC_MODES : dual SCM_DISCOVERY_MODES;
SERVICE DD_SCM_Update : DD_SCM_Update;
SERVICE SCM_Update : SCM_Update;
SERVICE DB_Update : dual DB_Update;
SERVICE NODE_FAILURES : NODE_FAILURES; -- events for failure and recovery.
ACTION
 IN Send_Requests(),
 BeginDirectedDiscovery();
BEHAVIOR
 action animation_Iam (name: string);
 MySourceID : VAR IP_Address;
 PV : VAR ProtocolVersion;

Model Specification in Rapide

Execute with Raptor Engine

Analyze Generated POSETs

MODELING
ESSENTIAL
COMPLEXITY

Assess Invariant
Satisfaction &
Constraint
Violations

1/31/2002 15

Layered View of Prototype JINI Architecture in Rapide
Derived from SEI Architectural Layers Approach

JINI
Entities

Service
Manager

Entity
Major
Functions

Lazy Discovery

Directed
Discovery
Client (s,ra)

Aggressive Discovery
Directed
Discovery

Functional
Subcomponents

Network
Node Communication

Links

Network
Topological
Entities

Legend
Type of

Part of

SCM
Multicaster

SM
Multicaster

Unicaster

Service
Cache

Manager

Service
User

Service
Repository

SCM
Discovery

SCM
Beacon &
Response

SCM
Matching

Cache

Notification
Repository

Multicast
Request
Server

Callback (ra)

Executive

SCM
Database Announcer

(s)

Executive

Multicast
Request
Client (s)

SCM
API

Server (sa)

Announcement
Responder (l,ra)

Multicast
Request

Server (l,sa)

JINI
Entities

Service
Manager

Entity
Major
Functions

Lazy Discovery

Directed
Discovery
Client (s,ra)

Aggressive Discovery
Directed
Discovery

Functional
Subcomponents

Network
Node Communication

Links

Network
Topological
Entities

Legend
Type of

Part of

Legend
Type ofType of

Part ofPart of

SCM
Multicaster

SM
Multicaster

Unicaster

Service
Cache

Manager

Service
User

Service
Repository

SCM
Discovery

SCM
Beacon &
Response

SCM
Matching

Cache

Notification
Repository

Multicast
Request
Server

Callback (ra)

Executive

SCM
Database Announcer

(s)

Executive

Multicast
Request
Client (s)

SCM
API

Server (sa)

Announcement
Responder (l,ra)

Multicast
Request

Server (l,sa)

1/31/2002 16

Drive Model Topology with Scenarios

> StartTime {NodeFail || NodeRecover} NodeID DelayTime.
> StartTime {LinkFail || LinkRestore} NodeID DelayTime FromNode

ToNode.
> StartTime {MProbeFail || MProbeRestore} NodeID DelayTime

FromNode ToNode.
> StartTime {GroupJoin || GroupLeave} NodeID DelayTime.
> StartTime {AddSCM || DeleteSCM} NodeID DelayTime.
> StartTime {AddService ChangeService}NodeID DelayTime ServiceTemplate

ServiceAPI ServiceGUI LeaseTime DurationTime.
> StartTime DeleteService NodeID DelayTime ServiceID.
> StartTime FindService NodeID DelayTime SMNodeID .
> StartTime AddNotificationRequest NodeID DelayTime NotificationID

ServiceTemplate Transitions LeaseTime DurationTime SCMID.
> StartTime DeleteNotificationRequest NodeID DelayTime NotificationID

SCMID.

1/31/2002 17

Analyze for Violations of Consistency States & Constraints

• SM is Service Manager
• SD is Service Description
• SCM is Service Cache Manager
• registered-services ::= set of (SM, SD) pairs
• discovered-SCMs ::= set of SCMs
• groups-to-join(SM) ::= set of groups that
an SM is supposed to join

• groups-member-of(SCM) ::= set of groups
that an SCM has implicitly joined

• node-failed(SM) ::= SM node failed sometime
during scenario execution

• updating-registration(SM, SD) ::= SM asked to
change or remove SD

• updating-discovered-SCMs(SM ,SCM) ::=
SM asked to delete SCM from discovered-
SCMs (SCM asked to delete group(G) from
groups-to-join(SM)) (G only intersection
between groups-to-join(SM) and groups-
member-of(SCM)))

Consistency states and constraints provide basis for defining
metrics that provide qualitative measures of properties of a system

1/31/2002 18

Analyze for Violations of Consistency States & Constraints

• LH is a lease holder, which could be an SM,
SU, or SCM, depending on circumstances

• LG is a lease granter, which must be an SCM
• L is a lease
• LI is a leased item, which could be service registration or a notification-

request registration
• lease-held(LH, LG) ::= set of (L, LI) pairs held by LH and granted by LG

Consistency states and constraints provide basis for defining
metrics that provide qualitative measures of properties of a system

1/31/2002 19

Analyze POSETs Off-Line to Compare and Contrast
Behaviors Given a Congruent Topology and Scenario

Metrics Based on Numbers of Messages
• Message volume?
• Message intensity?

Metrics Based on Time
• Service latency?
• Service throughput?
• Recovery latency?

Metrics Based on Change
• Derivative of the message intensity?
• Derivative of the service throughput?
• Derivative of the service latency?

Metrics Based on Complexity
• Degree of dependency among messages?
• Rate of constraint and invariant violations?
• Rate of exceptions?

POSET analyses provide basis for defining metrics that provide
quantitative measures of properties of a system

1/31/2002 20

SDP Performance / Scalability Measurements

Approach: Methodologies and tools for comparative performance and
scaling analysis of live SDP implementations.

Initial focus - Jini and UPnP

• Design of technology independent benchmark service.

• Development of synthetic workload generation tools for emulating the
behavior of large scale dynamic ad hoc networking environments.

• Development of implementation independent performance measurement
methodologies and tools for SDPs and supporting protocols.

1/31/2002 21

SDP Benchmark Service

• Objective – workload basis for meaningful comparative comparisons
of Jini / UPnP performance.

– Simple device / service that can be used to exercise all significant discovery
/ control capabilities of Jini and UPnP.

• Benchmark Service – very simple counting device.
– Capabilities - Get / Set integer counter.
– Attributes – GID, Name, Type

• Enable multiple match / query semantics
– Service interfaces

• Control – get / set integer
• GUI – simple user interface for control
• Eventing – remote notification of counter change

• Jini and UPnP instantiations

1/31/2002 22

Jini Benchmark Service
/*
* BasicService Interface
* This is the interface for the Basic Jini service for
* the client side.
*
* Scott Rose
* NIST
* 9/6/00
*/

package basicservice;

import java.rmi.RemoteException;
import net.jini.core.event.RemoteEventListener;
import net.jini.core.event.EventRegistration;

public interface BasicServiceIF
{

public int getData() throws RemoteException;
public void setData(int newVal) throws RemoteException;
public EventRegistration addRemoteListener(RemoteEventListener rev)

throws RemoteException;
public void getGUI() throws RemoteException;

}

1/31/2002 23

UPnP Benchmark Service
<?xml version="1.0"?>
<root xmlns="urn:schemas-upnp-org:device-1-0">
<URLBase>http://129.6.51.81:20002</URLBase>
<device>
<deviceType>urn:schemas-upnp-org:device:basicdevice:1</deviceType>

<friendlyName>Basic Service for Service Discovery Protocol
Testing</friendlyName>

<manufacturer>NIST-ANTD-ITG</manufacturer>
<manufacturerURL>http://w3.antd.nist.gov</manufacturerURL>
<modelDescription>UPnP Basic Service 1.0</modelDescription>
<modelName>BasicService</modelName> <modelNumber>1.0</modelNumber>
<modelURL>http://w3.antd.nist.gov/modelURL</modelURL>
<serialNumber>123456789001</serialNumber> <UDN>uuid:Upnp-BasicService-1_0-

darwin-20002</UDN>
<UPC>123456789</UPC>
<serviceList>

<service>
<serviceType>urn:schemas-upnp-

org:service:basicservice:1</serviceType>
<serviceId>urn:upnp-org:serviceId:basicservice1</serviceId>
<controlURL>/upnp/control/basicservice1</controlURL>
<eventSubURL>/upnp/event/basicservice1</eventSubURL>
<SCPDURL>/basicserviceSCPD.xml</SCPDURL>

</service>
</serviceList>
<presentationURL>/basicdevice.html</presentationURL>

</device>
</root>

1/31/2002 24

Synthetic Workload Generation Tools

• Objective – Emulate large, dynamic environments of 100’s of
devices / services and 10’s of control points / clients.

– Dynamic devices providing the benchmark service.
– Scripted control points execute measurement scenarios.

• Jini and UPnP Experimenters Toolkits
– Drive real implementations: SunMS Jini, Intel Linux & Windows ME UPnP.
– Emulate the behavior of a large number of dynamic devices

• # devices, device creation rate, device life time, service life time
• Devices implement the benchmark service

– Emulate the behavior control points / scripted behavior for testing
• # clients, query workload – (query type, service names / types)

• Jini / UPnP Device Emulation Tools
– Initial development complete – target of 100’s devices and 10’s of control

points met.
– Discovered scaling problems in Intel Linux UPnP 1.0 SDK

1/31/2002 25

Intel Linux UPnP Scaling Problems

• Problems encountered in achieving initial scaling goals for device
emulation tools.

– UPnP scalability above 40 devices a function of protocol tuning parameters
(e.g., response jitter, multicast retransmission factor).

– Errors in Intel implementation of jitter algorithms

UPnP Jitter Sensitivity

0

10

20

30

40

50

60

70

500 1000 1500 2000 2500 3000 3500

Jitter (mSec)

Av
g

D

ev
ic

es
 D

is
co

ve
re

d

 # Devices out of 64

1/31/2002 26

Some Example Results: Jini vs UPnP Discovery

• Initial experiments to establish UPnP / Jini baseline performance

Latency: Query by Unique ID

0

500000

1000000

1500000

2000000

2500000

2 4 8 16 32 64

Active Devices

Av
g

Re
sp

on
se

 T
im

e
(u

Se
c)

UPnP
Jini

1/31/2002 27

Some Example Results: Jini vs UPnP Discovery

Latency: Query for 1 Device of Type X

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

1800000

2 4 8 16 32 64

Active Devices

Av
g

Re
sp

on
se

 T
im

e
(u

Se
c)

UPnP
Jini

• Performance of “anycast” Query: “Find one instance of type X”

1/31/2002 28

Some Example Results: Jini vs UPnP Discovery

Utilization: Query for 1 Device of Type X

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

2 4 8 16 32 64

Active Devices

Av
g

N
et

w
or

k
Lo

ad
 (b

yt
es

)

UPnP
Jini

1/31/2002 29

Some Example Results: Jini vs UPnP Discovery

Latency Query All Devices

0

500000

1000000

1500000

2000000

2500000

3000000

3500000

4000000

2 4 8 16 32 64

Active Devices

Av
g

Re
sp

on
se

 T
im

e
(u

Se
c)

UPnP
Jini

• Performance of device poll: “Find all active devices / services”.

1/31/2002 30

Some Example Results: Jini vs UPnP Discovery

Utilization: Query All Devices

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

2 4 8 16 32 64

Active Devices

Av
g

Ne
tw

or
k

Lo
ad

 (b
yt

es
)

UPnP
Jini

1/31/2002 31

Performance Measurement Methodologies

• Developed performance scenarios & metrics
– Multiple service initiation
– Client type query – single instance, multiple instances, all

instances
– Client instance query – query for existing service, persistent query
– Client event notification – registration latency, notification latency,

distributed control performance (control + eventing).

• Designing implementation independent on-the-wire
performance (response/load) measurement tools.
– How to measure HTTP/RMI based protocol transactions?

1/31/2002 32

Modeling and Analysis: Upcoming Milestones
and Publications

• Jan 2001 – Complete Rapide Model for Jini, including scenario
driver and specification of invariants and constraints

• Mar 2001 – Complete Rapide Model for Universal Plug-and-Play
• Jul 2001 – Complete Off-Line Analysis Tools for POSETs
• Aug 2001 – Complete Rapide Model for Service Location Protocol
• Oct 2001 – Partial analysis of Jini, UPnP, and SLP
• Dec 2001 – Complete analysis of Jini, UPnP, and SLP

Milestones

• Spring 2001 – Paper identifying flaws in Jini and UPnP and describing
how those flaws were found

• Fall 2001 – Paper proposing invariants for service discovery protocols,
and evaluating how Jini, UPnP, and SLP fare

• Winter 2002 – Paper comparing and contrasting Jini, UPnP, and SLP at
the level of POSET metrics

Planned Papers

1/31/2002 33

Measurement: Upcoming Milestones
and Contributions

• Feb 2001 – Complete device / control point workload generation tools.
• Mar 2001 – Complete implementation independent measurement tools.
• May 2001 – Complete testbed performance measurement analysis.
• July 2001 – Complete development of simulation environment.
• Sep 2001 – Complete simulation analysis of SDPs.

Milestones

• Summer 2001– Public domain release of Jini/UPnP experimenters toolkit
consisting of workload generation tools, scenario scripts, and performance
measurement tools for SDPs and supporting protocols.

• Fall 2001 – Public domain release of simulation environment for ad-hoc
networks and protocol models for Jini/UPnP.

• Fall 2001 – Publication providing a quantitative performance/scaling
comparison of Jini/UPnP technologies.

Planned Contributions

1/31/2002 34

Plan to Assess Scalability

• Use Rapide Models as a Basis to Construct Simulation Models for Jini,
UPnP and SLP, Possibly using JavaSim (from Ohio State University)
or SSFnet (from Rutgers)

• Use Results from Measurement Portion of the Project to Parameterize
the Simulation Models of the Discovery Protocols

• Design Experiments to Assess the Effect of Large Service and Device
Populations on Network Traffic

1/31/2002 35

Optional Modeling and Analysis Demonstration

-- **
-- ** 3.3 DIRECTED DISCOVERY CLIENT INTERFACE **
-- **
-- This is used by all JINI entities in directed
-- discovery mode. It is part of the SCM_Discovery
-- Module. Sends Unicast messages to SCMs on list of
-- SCMS to be discovered until all SCMS are found.
-- Receives updates from SCM DB of discovered SCMs and
-- removes SCMs accordingly
-- NOTE: Failure and recovery behavior are not
-- yet defined and need reviw.
TYPE Directed_Discovery_Client
 (SourceID : IP_Address; InSCMsToDiscover : SCMList; StartOption : DD_Code;
 InRequestInterval : TimeUnit; InMaxNumTries : integer; InPV : ProtocolVersion)
IS INTERFACE
SERVICE DDC_SEND_DIR : DIRECTED_2_STEP_PROTOCOL;
SERVICE DISC_MODES : dual SCM_DISCOVERY_MODES;
SERVICE DD_SCM_Update : DD_SCM_Update;
SERVICE SCM_Update : SCM_Update;
SERVICE DB_Update : dual DB_Update;
SERVICE NODE_FAILURES : NODE_FAILURES; -- events for failure and recovery.
ACTION
 IN Send_Requests(),
 BeginDirectedDiscovery();
BEHAVIOR
 action animation_Iam (name: string);
 MySourceID : VAR IP_Address;
 PV : VAR ProtocolVersion;

Rapide Model of Jini V1.1 Execute with Raptor Engine

Generate POSETs

